Diastereoselective Reduction of Chiral @,y-Unsaturated *a-Oxo* **Esters. Asymmetric Synthesis of the Fatty Acid Moiety of S ymbioramide**

Hideyuki Sugimura' and Kazuhiro Yoshida

The Noguchi Institute, 1-8-1, Kaga, Itabashi-ku, Tokyo 173, Japan

Received **March** *15, 1993*

Optically active α -hydroxy β , γ -unsaturated acids or esters have been synthesized by several methods, including enzymatic reduction of β , γ -unsaturated α -oxo acids^{1,2} and diastereoselective vinylsilane substitution with a chiral glyoxylate.³ Although the stereoselective reduction of α -oxo esters⁴⁻⁷ or amides⁸⁻¹⁰ has been studied using a variety of chiral auxiliaries, a chemical approach to such reduction of β , γ -unsaturated α -oxo acid derivatives has not been reported. We describe here the asymmetric synthesis of α -hydroxy β , γ -unsaturated esters by reducing β, γ -unsaturated α -oxo esters using (-)-8-phenylmenthol or **(-)-trans-2-phenylcyclohexanol as** a chiral auxiliary.

(-)-8-Phenylmenthol is an effective chiral auxiliary in the asymmetric reduction of α -oxo esters, as shown by Whitesell et al.⁴ and, more recently, by Solladié-Cavallo and Bencheqroun.7 However, high diastereoselectivity occurs when potassium **triisopropoxyborohydride** or potassium tributylborohydride is the reducing reagent, which is somewhat inconvenient. We initially examined the diastereoselective reduction of the β -phenyl-substituted β , γ -unsaturated α -oxo ester **la** as a model compound with a view to obtaining a high level of selectivity, using several commercially available reducing agents. The results are summarized in Table I (runs 1-5). Very high selectivity was achieved with L-Selectride (Aldrich) in diethyl ether (run 2). The reaction in THF resulted in a lower level of stereochemical control (run 1). When K-Selectride (Aldrich) was the reducing agent, the yield was slightly decreased due to several byproducts including the saturated α -oxo ester (run 3). The reduction with aluminum hydrides was less satisfactory than that with borohydrides, with regard to diastereoselectivity (runs 4 and **5).** The use of DIBAH, moreover, led to the formation of a significant amount of undesirable byproducts.

Some results of the reduction of a β , γ -unsaturated α -oxo ester bearing a β -alkyl group (R) are also summarized in

Table I. Reduction of Chiral β,γ-Unsaturated α-Oxo Esters

run	ester	reducing agent	solvent	yield/%	% de ^a
1	la	$LiB(s-Bu)$ s H	THF	92	85
$\overline{2}$		$LiB(s-Bu)_{3}H$	Et2O	90	97
3		$KB(s-Bu)_{3}H$	Et ₂ O	75°	96
4		$LiAl(t-BuO)3H$	Et2O	83°	70
5		$Al(i-Bu)2H$	Et_2O	20^d	40
6	1b	$LiB(s-Bu)_{3}H$	THF	82	95
7		$LiB(s-Bu)_{3}H$	Et2O	81	97
8		$LiAl(t-BuO)3H$	Et ₂ O	49 ^e	48
9	2а	$LiB(s-Bu)3H$	THF	95	93
10		$LiB(s-Bu)3H$	$\mathrm{Et}_2\mathrm{O}$	96	96
11	2b	$LiB(s-Bu)3H$	THF	88	94
12		$LiB(s-Bu)3H$	$\mathbf{E}\mathbf{t}_2\mathbf{O}$	84	94

^aThe diastereomeric ratios were determined by 4OO-MHz lH NMR. bsc The corresponding saturated a-oxo ester was also obtained in <8 % yield. d The corresponding saturated α -oxo ester and α -hydroxy β , γ **unsaturated ester, formed by addition of the isobutyl group to the a-carbonylin la, werealsoobtainedin33and28% yielda,respectively.** ϵ The corresponding saturated α -oxo ester was also obtained in 43% **yield.**

Table I **(runs** *6-8).* L-Selectride exhibited high diastereoselectivity again, and in the reaction with lithium tritert-butoxyaluminum hydride there was a considerable decrease in both yield and selectivity.

The diastereomeric ratios were determined by the integral of the 400-MHz ¹H NMR of the α -methine and vinyl protons. The **2R** configuration of the major diastereomer **3a** was confirmed by comparing the '3C NMR chemical shifts of the diastereomeric mixture to that of the $(2S)$ -isomer reported by Mikami et al.³ This stereoselectivity is in agreement with that of α -oxo esters reported by Whitesell et al.⁴ and Solladié-Cavallo and Bencheqroun.' The configuration of **3b** was assigned by analogy with **3a.**

Optically active **trans-2-phenylcyclohexanol** is an alternative auxiliary for chiral induction whose advantage is that both enantiomers can be obtained in high enantiomeric purity.^{11,12} Table I (runs 9-12) shows the results of the diastereoselective reduction using *(-)-trans-2* phenylcyclohexanol **as** the chiral auxiliary. L-Selectride afforded satisfactory yields and diastereoselectivities. To determine the configuration at the 2-hydroxy position, the hydroxy esters **4a** and **4b** were converted **to** the $corresponding$ unsaturated 1,2-diols by treatment with LAH. The optical rotation of either product was consistent

^{(1) (}a) Schummer, A,; Yu, H.; Simon, H. *Tetrahedron* **1991,47,9019.**

⁽b) Bonnaffé, D.; Simon, H. *Tetrahedron* 1992, 48, 9695.
(2) (a) Casy, G.; Lee, T. V.; Lovell, H. *Tetrahedron Lett.* 1992, 33, 817.
(b) Casy, G.; Lee, T. V.; Lovell, H.; Nichols, B. J.; Sessions, R. B.; Holbrook, J. J.

⁽³⁾ Mikami, K.; Wakabayashi, H.; Nakai, T. *J. Org. Chem.* **1991,56, 4337.**

⁽⁴⁾ Whitesell, J. **K.; Deyo, D.; Bhattacharya, A.** *J. Chem.* **SOC.,** *Chem. Commun.* **1988,802.**

⁽⁵⁾ SolladiB-Cavallo, A.; Suffert, J. *Tetrahedron Lett.* **1986,26, 429. (6) Akiyama, T.; Nishimoto, H.; Ozaki, S.** *TetrahedronLett.* **1991,32, 1335.**

⁽⁷⁾ Solladil-Cavallo, A; Bencheqroun, M. *Tetrahedron: Asymmetry* **1991, 2, 1165.**

⁽⁸⁾ **(a) Soai, K.; Haaegawa, H.** *J. Chem.* **SOC.,** *Perkin Trans.* **1 1988, 769. (b)** Soai, **K.; Ida, T.; Hasegawa, H.;Iahizaki, M.** *Chem. Lett.* **1986,** 1897.

(9) (a) Kawanami, Y.; Fujita, I.; Taniguchi, Y.; Katsuki T.; Yamaguchi,

^{(9) (}a) Kawanami, Y.; Fujita, I.; Taniguchi, Y.; Kabuki **T.; Yamaguchi, M.** *Chem. Lett.* **1987, 2021. (b) Kawanami, Y.; Fujita, I.; Aeahara, 5.;**

Katsuki, T.; Yamaguchi, M. *Bull. Chem.* **SOC.** *Jpn.* **1989,62,3598. (10) Solodin, 1.; Goldberg, Y.; Zelcans, G.; Lukevica, E.** *J. Chem. SOC., Chem. Commun.* **1990, 1321.**

^{(11) (}a) Whitesell, J. **K.; Chen, H.-H.; Lawrence, R. M.** *J. Org. Chem.* **1986,50,4663. (b) Whitesell,** J. **K.; Nabona, K.; Deyo,** D. *J. Org. Chem.* **1989,54,2258.**

⁽¹²⁾ For a review: Whitesell, J. **K.** *Chem. Reu.* **1992,92,953.**

with that of the diols similarly derived from 3a and 3b. Consequently, the configuration for the major diastereomers 4a and **4b** was assigned to be 2R.13

To demonstrate the synthetic potential of the above procedure, we achieved enantioselective synthesis of a **(2R,3E)-2-hydroxy-3-octadecenoic** acid derivative, corresponding to the fatty acid moiety of symbioramide, a novel bioactive ceramide.^{14,15} As shown in Scheme I, oxidation of 1-pentadecanol **(5)** with PCC gave the corresponding aldehyde, which was subsequently used in acetalization to provide 1-pentadecanal dimethyl acetal **(6)** in 71 % yield from 5 after distillation. Acetal 6 was converted to β , γ unsaturated α -oxo ester 7 via the two-step procedure reported previously:¹⁶ Treatment of 6 with ethyl 2-(trimethylsi1oxy)acrylate in the presence of boron trifluoride etherate in dichloromethane at -78 to 0 **"C** followed by silica gel in refluxing benzene afforded ethyl (E) -2-oxo-3-octadecenoate **(7)** in 66 % yield. After transesterification of the ethyl ester using lithium salts of the appropriate chiral alcohols, the resulting chiral esters 8a and 8b were reduced by L-Selectride in diethyl ether at -78 °C for 1 h to give the corresponding α -hydroxy β , γ -unsaturated esters 9a and 9b in 74 and 84% yields with >98 and 97% de, respectively. Methanolysis of 9a and 9b gave the known methyl ester **10** without racemization for which the assignment of the **2R** configuration **as** well as the optical purity was confirmed by comparison with that reported by Nakagawa et al.16 Thus, the optical purity of **10** was estimated **as** >99% ee of that derived from 9a and 96% ee of that derived from 9b **(see** Experimental Section).

In conclusion, a highly diastereoselective reduction of (-)-8-phenylmenthyl and (-)-trans-2-phenylcyclohexyl β , γ -unsaturated α -oxo esters was established and its utility shown by the asymmetric synthesis of the $(2R.3E)$ -2hydroxy-3-octadecenoic acid derivative, the fatty acid moiety of symbioramide.

Experimental Section

All melting points are uncorrected. ¹H and ¹³C NMR spectra were measured at **400** and **100 MHz,** respectively, with MerSi **as** an internal reference and CDCh **as** the solvent. *J* values are given in **Hz.** All solvents were dried prior to use.

General Procedure for Reduction of β , γ -Unsaturated a-Oxo EsterswithL-Selectride. **Thefollowingieamodiication** of a published procedure.⁷ To a solution of β , γ -unsaturated α -oxo ester (1 mmol) in 20 mL of ether was added 1.2 mL of L-Selectride **(1 M** in THF, **1.2** "01) dropwise at **-78** OC under **Ar.** After the mixture was stirred for **1** h, **1** mL of methanol, **1.5** mL of **10%** aqueous NaOH, and 1.5 mL of 30% aqueous H₂O₂ were successively added, and then the reaction mixture was allowed to warm to room temperature for over **1** h. After **20 mL** of water was added, the aqueous layer **was** separated and washed twice with **20** mL of ether. The organic layer was dried and concentrated under reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate) to give β , γ unsaturated α -hydroxy esters.

(lR,25,SR)-S-Methyl-2-(**1-methyl-1-phenylethy1)cyclo**hexyl **(2&3E)-2-hydroxy-4-phenyl-3-butenoate** (3a): mp **107.0-107.5 °C** (hexane); ¹H NMR δ 0.86 (d, 3H, $J = 6.3$), 0.99-**1.36** (m, **3H), 1.22 (s, 3H), 1.31** *(8,* **3H), 1.46** (m, **lH), 1.58-1.70** (m, **2H), 1.90** (m, **lH, J** = **11,7), 2.09** (dt, **lH, J** = **3.4, 10.7), 2.05-2.13** (br, **lH), 4.49** (d, **lH, J** = **5.41, 4.93** (dt, **lH, J** = **4.4, 10.7),6.15(dd,1H,J=5.4,16.1),6.73(d,1H,J=16.1),7.15-7.42** (m, **10H); 'Bc NMR 6 21.7,26.1,26.7,27.3,31.3,34.4,39.9,41.5, 50.2,71.9,76.8,124.8,125.5,126.6,127.8,128.1,128.5,132.1,136.2, 151.4, 171.5;** IR (KBr) **3460, 1720** cm-'. Anal. Calcd for C₂₈H₃₂O₃: C, 79.55; H, 8.22. Found: C, 79.52; H, 8.47.

The ¹H NMR signals for the α -methine and vinyl protons of the S isomer appeared at δ 3.79 $(d, J = 5.4)$, 5.81 $(dd, J = 5.4)$ 16.1), 6.49 (d, $J = 16.1$).
 (1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclo-

hexyl $(2R,3E)$ -2-hydroxy-6-phenyl-3-hexenoate $(3b):$ ¹H NMRG **0.87 (d,3H,** *J=* **6.8),0.97-1.15** (m, **3H), 1.22** (e, **3H), 1.31 (a, 3H), 1.46** (m, **lH), 1.57-1.68** (m, **2H), 1.88** (m, **lH), 1.94** (br, **lH),2.06(ddd,lH,J=3.4,10.7,12.2),2.34(dt,2H,J=6.8,7.8), 2.67** (t, **2H, J** = **7.8), 4.26** (m, **lH, J** = **1.5, 5.9), 4.89** (dt, **lH, J** = **4.4,10.7), 5.43** (dd, **lH, J** = **5.9, 15.61,** *5.86* (ddt, **lH, J** = **1.5, 6.8, 15.6), 7.1-7.2** (m, **4H), 7.2-7.35** (m, **6H);** lSC **NMR 6 21.7, 26.2, 26.7, 27.2, 31.3, 34.0, 34.4, 35.2,40.0,41.9, 50.1, 72.0,76.5, 125.5, 125.9, 126.0, 128.1, 128.3, 133.7, 141.6, 151.3, 171.9;** IR (neat) 3500, 1725 cm⁻¹. Anal. Calcd for C₂₈H₃₆O₃: C, 79.96; H, 8.63. Found: C, 79.89; H, 8.75.

The 1 H NMR signals for the α -methine and vinyl protons of the S isomer appeared at δ 3.57 (dd, $J = 5.9$), 5.16 (dd, $J = 5.9$, **15.6), 5.62** (ddt, *J* = **1.5, 6.8, 15.6).**

yl-3-butenoate (4a): white crystalline, mp 109.0-110.0 °C (hexane); **1H NMR 6 1.20-1.62** (m, **4H), 1.80** (m, **lH), 1.83-1.98** (m, **2H), 2.17-2.25** (m, **lH), 2.70** (dt, **lH, J** = **3.4, 12.2), 2.89** (d, **lH, J** = **5.9), 4.60** (m, **lH), 5.07** (dt, **lH, J** = **4.4, 10.3), 5.49** (dd, **lH,** *J=* **5.4,15.6), 6.53** (dd, **lH,** *J=* **1.5,15.6),6.99-7.36** (m, **10H);** ¹³C NMR δ 25.3, 26.3, 32.9, 34.6, 50.4, 71.7, 79.0, 126.0. 127.3, **127.4, 128.0, 128.3, 128.9, 129.0, 132.2, 143.0, 173.4;** IR (KBr) **3460, 1730** cm-1. Anal. Calcd for **CmHuOa:** C, **78.54; H, 7.19.** Found: C, 78.21; H, 7.24.

The ¹H NMR signals for the α -methine and vinyl protons of the S isomer appeared at δ **4.44(m), 6.06 (dd,** $J = 5.4, 15.6$ **), 6.67** (dd, **J** = **1.6, 15.6).**

(1&29)-2-Phenyl- **l-cyclohexyl(2~E)-2-hydroxy-6-phen**yl-3-hexenoate (4b): **1H NMR 6 1.28-1.62** (m, **4H), 1.79** (m, **lH,** *J=* **13.2), 1.86-1.98** (m, **2H), 2.09** (dt, **2H,** J ⁼**6.8,8.3), 2.18** (m,

⁽¹³⁾ The optical rotations **are as** follows. **(R)-PhCH=CHCH(OH)- CH₂OH** (from 93% de of **4a**): $[a]^{26}D - 28^{\circ}$ (CHCl₃, *c* 0.57). (*R*)-PhCH₂-**CH₂CH=CHCH(OH)CH₂OH (from 94% de of 4b): [a]²⁴p-13° (CHCl₃, c 0.94).**

⁽¹⁴⁾ Isolation: **Kobayashi, J.; Ishibaehi, M.; Nakamura, H.; Hirata, Y** .; **Yammu, T.; Sasaki, T.;** Ohizumi, *Y. Experientio* **1988,44,800. (15) Total eynthwie: (a) Nakagawa, M.; Yoshida, J.; Hino, T.** *Chem.*

Lett. **1990, 1407. (b) Yoshida, J.; Nakagawa, M.;** Seki, **H.; Hino, T.** *J. Chem. SOC., Perkin T~ns. 1* **1992, 343.**

⁽¹⁶⁾ Sugimura, H.; Yoehida, K. *Bull. Chem. SOC. Jpn.* **1992,65,3209.**

lH),2.60(t,2H,J=8.3),2.88(ddd,lH,J=3.9,10.7,12.2),2.73 $(d, 1H, J = 6.4), 4.36$ (dd, $1H, J = 5.4, 6.4), 4.80$ (dd, $1H, J = 5.4,$ **15.1), 5.05** (dt, **lH, J** = **4.4, 10.7), 5.59** (dt, **lH, J** = **6.8, 15.1), 7.10-7.32** (m, **10H);** 1sC NMR **6 24.7,25.7, 32.2,33.8,34.0, 35.2, 49.9,71.0,78.0,125.9,126.6,127.5,128.3,132.6,141.8,142.7,173.1; IR** (neat) **3500,1725** cm-1. Anal. Calcd for **CuHaOs:** C, **79.09; H**, 7.74. Found: C, 79.16; H, 7.90.

The ¹H NMR signals for the α -methine and vinyl protons of the S isomer appeared at δ 4.21 (dd, $J = 5.4, 5.9$), 5.35 (dd, $J =$ **5.4, 15.1), 5.77** (dt, **J** = **6.8, 15.1).**

(lR,28,SR)-S-Met hyl-24 **1-methyl-1-phenylethy1)cyclo**hexyl **(2R,3E)-2-Hydroxy-3-octadecenoate** (98). According to the general procedure, 8a **was** reduced to yield 9a **as** a colorless oil **(74%, >98%** de): **1H** NMR **6 0.87** (d, **3H, J** = **6.8), 0.88** (t, **3H, J** = **6.8), 0.98-1.13** (m, **2H), 1.17-1.38** (m, **28H), 1.31 (s,3H), 1.45** (m, **lH), 1.57-1.66** (m, **2H), 1.89** (m, **lH, J= 12.2), 1.97-2.09** (m, **4H), 4.27** (dd, **lH, J** = **5.1, 6.3), 4.88** (dt, **lH, J** = **4.4,10.7), 5.37** (dd, **lH,** *J=* **6.3,15.1), 5.80** (dt, **lH, J= 6.8,15.1),7.16-7.20** (m, 1H), 7.23-7.34 (m, 4H);¹³C NMR δ 14.1, 21.7, 22.7, 26.5, 26.7, **27.0, 28.8, 29.1, 29.3, 29.4, 29.5, 29.6, 31.3, 31.9, 32.1, 34.4, 39.8, 41.5,50.1,72.1,76.4,125.3,125.4,125.5,128.0,134.9,151.2,172.1;** IR (neat) **3550,1730** cm-l. Anal. Calcd for CsrHsOa: C, **79.63;** H, 11.01. Found: C, 79.90; H, 11.21.

(**1R,25)-2-Phenyl-l-cyclohexyl** (2&3E)-2-Hydroxy-3-0~ tadecenoate (9b). According to the general procedure, 8b **was** reduced to yield 9b **as** a colorless oil (&I%, **96%** de): ***H NMR** ⁶**0.88** (t, **3H, J** = **6.4), 1.15-1.42** (m, **28H), 1.43-1.62** (m, **2H), 1.70-1.83** (m, **2H), 1.85-1.98** (m, **2H), 2.17** (m, **lH), 2.68** (ddd, **lH, J** = **3.9,10.7,12.2), 4.34** (dd, **lH, J** = **5.9,6.3), 4.73** (dd, **lH,** *J=* **5.9, 15,1), 5.04** (dt, **1H, J= 4.4, 10.7), 5.53** (ddt, **lH, J= 1.5, 6,8,15.1), 7.13-7.19** (m, **3H), 7.21-7.27** (m, **2H); 'BC** NMR **6 14.1, 22.7, 24.7, 25.7, 28.8, 29.3, 29.4, 29.6, 29.7 X 2, 32.0, 32.1, 32.3, 34.0,49.8,71.1,77.9,125.7,126.6,127.5,128.3,133.7,142.7,173.2;** IR (neat) 3500, 1720 cm⁻¹. Anal. Calcd for C₃₀H₄₈O₃: C, 78.89; **H, 10.59.** Found C, **78.63; H, 10.58.**

The ¹H NMR signals for the α -methine and vinyl protons of the S isomer appeared at δ 4.23 $(dd, J = 5.8, 6.3), 5.30 (dd, J =$ **5.8, 15.1), 5.72** (ddt, **J** = **1.5, 6.8, 15.1).**

Methanolysis of 9a and 9b. From 9a. 9a (121 mg, 0.24 mmol) **was dissolved in 6 mL of 1 M H₂SO₄ in MeOH-THF (5:1), and** the solution was stirred under reflux for **12** h. The reaction mixture was neutralized with saturated aqueous NaHCO₃ and extracted **three** times with **10 mL** of ether. The combined organic layer **was** dried and concentrated under reduced pressure. The residue was chromatographed on silica gel (hexane-ethyl acetate **(191))** to give **63** mg of methyl ester 10 (93%) **as** a white solid accompauied by **53 mg** of (-)-Sphenylmenthol **(96%):** mp **42** $^{\circ}$ C; $[\alpha]^{29}$ _D –45.3° (CHCl₃, *c* 0.696) (lit.¹⁵ $[\alpha]$ _D = –44.7°); ¹H NMR δ 0.90 (t, 3H, $J = 6.4$), 1.20–1.40 (m, 24H), 2.06 (dt, 2H, $J = 6.8$, 7.3), 2.85 (d, 1H, $J = 6.4$), 3.80 (s, 3H), 4.61 (dd, 1H, $J = 6.4$), 5.50 (dd, **lH, J** = **6.4, 15.6), 5.88** (dt, **lH, J** = **6.8, 15.6);** 1gC NMR **⁶ 14.1, 22.7, 28.8, 29.2, 29.4, 29.5, 29.6, 29.7, 31.9, 32.2, 52.8, 71.5, 125.9, 135.1, 174.3; IR** (KBr) **3450, 1740** cm-l. **Anal.** Calcd for C1amOs: C, **73.03; H, 11.61.** Found; C, **73.09, H, 11.61.**

From 9b. Similarly, the reaction of 9b (230 mg, 0.50 mmol) in **12 mL** of **1** M **H2S04** (MeOH-THF **(5:l))** under reflux for **¹** h afforded **154 mg** of 10 **(98%)** accompanied by **88 mg** of (-)- 2-phenylcyclohexanol (99%): $[\alpha]^{28}$ _D -43.5° (CHCl₃, *c* 1.46).

Acknowledgment. We are grateful to Professor Teruaki Mukaiyama (Science University of Tokyo) for **his** helpful discussions and **also** thank Chisso Corporation (Tokyo, Japan) for the generous gift of *(-)-trans-2* phenylcyclohexanol. This work supported in part by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: Experimental procedures and characterization **data** for compounds la,b, 2a,b, **6, 7,** and 8a,b **(4** pages). This material **is** contained in libraries on microfiche, immediately follows thia article in the microfii version of the **journal,** and *can* be ordered from the ACS; **see** any current masthead page for ordering information.